Hermite-Hadamard-Type Inequalities for Increasing Positively Homogeneous Functions
نویسندگان
چکیده
Recently, Hermite-Hadamard-type inequalities and their applications have attracted considerable interest, as shown in the book [1], for example. These inequalities have been studied for various classes of functions such as convex functions [1], quasiconvex functions [2–4], p-functions [3, 5], Godnova-Levin type functions [5], r-convex functions [6], increasing convex-along-rays functions [7], and increasing radiant functions [8], and it is shown that these inequalities are sharp. For instance, if f : [0,1]→ R is an arbitrary nonnegative quasiconvex function, then for any u∈ (0,1) one has (see [3])
منابع مشابه
Some Integral Inequalities of Hermite-Hadamard Type for Multiplicatively s-Preinvex Functions
In this paper, we establish integral inequalities of Hermite-Hadamard type for multiplicativelys-preinvex functions. We also obtain some new inequalities involving multiplicative integralsby using some properties of multiplicatively s-preinvex and preinvex functions.
متن کاملHermite-Hadamard Type Inequalities for MφA-Convex Functions
This article deals with the different classes of convexity and generalizations. Firstly, we reveal the new generalization of the definition of convexity that can reduce many order of convexity. We have showed features of algebra for this new convex function. Then after we have constituted Hermite-Hadamard type inequalities for this class of functions. Finally the identity has been revealed for ...
متن کاملA generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions
Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.
متن کاملHermite-Hadamard inequality for geometrically quasiconvex functions on co-ordinates
In this paper we introduce the concept of geometrically quasiconvex functions on the co-ordinates and establish some Hermite-Hadamard type integral inequalities for functions defined on rectangles in the plane. Some inequalities for product of two geometrically quasiconvex functions on the co-ordinates are considered.
متن کاملFractional Hermite-Hadamard type inequalities for n-times log-convex functions
In this paper, we establish some Hermite-Hadamard type inequalities for function whose n-th derivatives are logarithmically convex by using Riemann-Liouville integral operator.
متن کامل